skip to main content


Search for: All records

Creators/Authors contains: "Takhistov, Volodymyr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. ABSTRACT

    Primordial black holes (PBHs) formed in the early Universe constitute an attractive candidate for dark matter. Within the gaseous environment of the interstellar medium, PBHs with accretion discs naturally launch outflows such as winds and jets. We discuss for the first time how PBHs with significant spin can sustain powerful relativistic jets and generate associated cocoons. Jets and winds can efficiently deposit their kinetic energies and heat the surrounding gas through shocks. Focusing on the Leo T dwarf galaxy, we demonstrate that these effects form novel tests and set new limits on PBHs over a significant ∼10−2 –106 M⊙ mass range, including the parameter space associated with gravitational wave observations by the LIGO and VIRGO Collaborations. Observing the morphology of emission will allow to distinguish between jet and wind contributions, and hence establishes a new method for identifying spinning PBHs.

     
    more » « less
  3. Abstract

    Primordial black holes (PBHs) from the early universe constitute attractive dark matter candidates. First detections of black hole–neutron star (BH–NS) candidate gravitational wave events by the LIGO/Virgo collaboration, GW200105 and GW200115, already prompted speculations about nonastrophysical origin. We analyze, for the first time, the total volumetric merger rates of PBH–NS binaries formed via two-body gravitational scattering, finding them to be subdominant to the astrophysical BH–NS rates. In contrast to binary black holes, a significant fraction of which can be of primordial origin, either formed in dark matter halos or in the early universe, PBH–NS rates cannot be significantly enhanced by contributions preceding star formation. Our findings imply that the identified BH–NS events are of astrophysical origin, even when PBH–PBH events significantly contribute to the gravitational wave observations.

     
    more » « less
  4. null (Ed.)
  5. Abstract The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios. 
    more » « less